

Team Number: May1701

Client: Prof. Chaoqun (Crystal) Lu

Advisers: Prof. Johnny Wong

Team Members/Roles:

Kellen Johnson – Team Communication Leader

Anish Kunduru – Team Leader

Julio Salinas – Team Concept Holder

Eli Devine – Team Webmaster

may1701@iastate.edu

http://may1701.sd.ece.iastate.edu/

Revised: 12/2/16, version 3.0

Visualization of Climate and
Earth System Modeling

PROJECT PLAN

PAGE 1

Contents

1 Introduction ... 2

1.1 Project Statement .. 2

1.2 Purpose .. 2

1.3 Goals ... 2

2 Deliverables ... 3

3 Design ... 3

3.1 Previous Work, Associated Literature, Past Development .. 3

3.2 Proposed System Block Diagram ... 4

3.3 Assessment of Proposed Method ... 4

3.4 Validation ... 4

4 Project Requirements/Specifications ... 5

4.1 Functional ... 5

4.2 Non-functional ... 5

5 Challenges .. 7

6 Timeline ... 8

6.1 First Semester ... 8

6.2 Second Semester .. 8

7 Conclusions .. 10

8 References .. 11

9 Appendices ... 12

PAGE 2

1 Introduction

1.1 PROJECT STATEMENT

The product we are to build consists of a web application that allows users to query and view

various maps that represent “natural and anthropogenic stresses” (compounds that are added to

the ecosystem). Our client (Prof. Chaoqun Lu) currently develops 2D .tiff images (see Appendix 9.1)

that represent maps of various compounds and would like us to create a platform that would allow

dynamic loading of her various maps onto a 3D space (see Appendix 9.2). Currently, our client

analyzes compounds using a proprietary algorithm and creates a graph data stored in an ASCII

(American Standard Code for Information Interchange) format. The client has two issues as it

stands: The first is the computation of this graph data takes several days or weeks for each model.

The second is the client has no easy way to display this data for actors to view and interact with it.

The goal of our project is to focus on the second issue: provide a way for interested parties to view

data in a user-friendly and interactive 3D environment. If time permits, our secondary goal is to use

our computer science knowledge to see if we can assist our client in speeding up her algorithm.

1.2 PURPOSE

The Visual Earth Modeling System will allow various policy makers (government, grant societies,

etc.) and land managers (real-estate, governmental, farmers, etc.) to visually examine, further

analyze, and understand spatial patterns of various gas compounds, water discharges, and nutrient

movement. Allowing these stakeholders to further understand the environment will aid them in

making decisions in reference to pollution policy, development of land to be used for various crops,

grant making, etc.

1.3 GOALS

In addition to helping our client bring her work to an interactive and 3D space:

 Create a platform which allows user to view monthly mappings of various compounds.

 Create a platform which allows users to forecast the effects of various compounds on the

environment.

 Provide a platform that can be used as a global learning tool to help interested parties

understand the implications of human procedures on the general ecosystem.

 Build a sound product that could be further implemented in the future (by our team or

other developers) if the client so wishes.

 Create a tool that automatically creates visual representations without additional effort

necessary from the client.

PAGE 3

2 Deliverables

The Deliverables to meet the Projects Goals are as followed:

 Webpage that displays various layers of compounds onto a 3D space.

 3D Map-Service layering that can be dynamically loaded and chosen by the user for every

available data model.

 Web-hosted parser to allow client to parse ASCII maps into dynamically loading webpages.

This will be ultimately done through ArcGIS for Server.

 Server which will serve as host for the website, ArcGIS for Server background hosting, and

ArcMap/ArcPy Processing Tools

3 Design

3.1 PREVIOUS WORK, ASSOCIATED LITERATURE, PAST DEVELOPMENT

Since ArcGIS is the platform that we have chosen to develop on, the bulk of the informational

material required to map this project will be provided by the ArcGIS JS API (3) and related

materials of ArcGIS for Server, ArcPy Modules, and ArcMap. Throughout the semesters, we will be

able to go through and view, edit, and create various pieces onto which our client will be able to

pick which data-type she prefers. Once semester two starts, we will likely have to look into

dynamically editing ArcGIS layers using ArcPy. We have also contacted an Iowa State ArcGIS

analyst, Josh Obrecht, who has said he would be happy to share his expertise if we require it.

Our first approach was to use Google Earth as our client and her team had suggested. The Google

Earth plug-in and the associated API allows developers to seamlessly incorporate all Earth

manipulation capabilities we require directly into a webpage (4). It also allows for the ability to be

able to create various 3D objects, which is a feature we will be required to incorporate into our

design. The API also provides the ability to be able to dynamically load your own database, which

you can then display on a Google Earth globe. Unfortunately, our team found out that the Google

Earth API would be deprecated by the end of the year. The reasoning behind it is that the Google

Earth API was originally constructed upon an insecure plug-in which Google Chrome and Mozilla

Firefox alike have decided to no longer support (5).

One of the similar products that we looked into was Landmark's DecisionSpace Earth Modeling

(see Appendix 9.7.1). In a nutshell, this program not only displays 3D graphical data to the user, but

also allows the user to further understand the values that are being placed (6). It also allows for the

dynamic elements that we may have to incorporate in semester two, which is why this program

may be of help to us moving forward. If we are able to utilize the physics and pixel-to-pixel

communication of dynamic objects, this would be another possible implementation.

Additionally, there is currently similar work being done by the United States Geological Survey

(USGS). Their site provides real-time data on current and past conditions and how this impacts

current predictive observations of Earth. An example of data processing that is similar to work done

by our client is related to water discharge. Specifically, from the USGS site one can see a map of the

U.S. that shows daily streamflow percentages, which is the same type of data, water discharge, our

client has recorded and would like mapped. The water discharge is the volume of water moving

PAGE 4

down a stream or river per unit time. USGS measures their streamflow/water discharge by

subsections of channel of water, where the area of the subsection is equal to the product of the

depth of the subsection and the width. The discharge for the subsection equates to the product of

the velocity of the stream flow and the area calculated in the previous statement (8). Dynamically

loading data is provided through the ability to click on a specific state for more details (see

Appendix 9.7.2).

In our own attempts this semester, our team moved its focus to using a CSV Layer via ArcGIS for

JavaScript. After parsing all of the Data into CSV files, we attempted to dynamically load these files

onto a 3D map using the ArcGIS for JavaScript Web API. We would quickly determine that loading

such a large number of plot points is unacceptably slow (on the order of minutes for slower

laptops). Additionally, the CSV layer type that we used only allowed ~17,000 points to be loaded

this way before discontinuing the plotting of points (see Appendices 9.4 & 9.5). While we were

correctly reading the client’s data (can be inferred by comparing shape of colored .tiff (Appendix

9.6) to shape of output from Appendices 9.4 & 9.5), this idea was scrapped due to performance and

technical constraints. Due to this unsuccessful implementation, we decided to look towards ArcGIS

for Server for answers.

3.2 PROPOSED SYSTEM BLOCK DIAGRAM

See Appendix 9.3.

3.3 ASSESSMENT OF PROPOSED METHOD

Our current plan is to host each month of each compound (each individual data-set) as its own

individual map service. This is for stability reasons and gives us the ability to limit CPU and

memory usage. We may later find it more practical to merge maps together by adding multiple

layers to a single map. We will still use our parser which will take all ASCII files uploaded by our

client and transform them into CSV files to be used as the datasets that are used for creation of

map-services and their associated layers. These data sets will then be saved onto our local GIS

server machine; and we will use these for the automated publishing of map documents to our GIS

Server using ArcPy. From ESRI, this automation has been deemed a “four-step” process (7).

In summary, these steps are:

1. Create the Draft Service Definition.

2. Use ArcPy to analyze for any build errors.

3. If successfully analyzed, convert to Service Definition; else, troubleshoot and restart.

4. Publish as Service.

This process is summarized from Reference 7.

Finally, any hosted map service that was created using the above process, will be able to be called

using the ArcGIS RESTful API. As a group, we wish to start off modular and can always tightly

couple later if we see performance benefits during testing.

3.4 VALIDATION

Our product will be finalized when end users are able to queue up the 3D environment, interact

with the globe, and dynamically load all of the data that the client currently has in 2D visuals, onto

PAGE 5

a 3D space. The client will also be able to upload all future calculated mappings using the previous

format demonstrated in her ASCII files. These mappings will be uploaded to the server and be

selectable by any end user. For extended life-cycle demonstrations, the plan is to provide users with

the ability to introduce various selectable compounds to the 3D environment.

4 Project Requirements/Specifications

4.1 FUNCTIONAL

Demonstrate climate change dynamics across space: A website that projects the ASCII data given to

us by the client on a 3D model of a globe (visual data modeling).

 The product shall allow the client to upload raw ASCII data to the server.

 The product shall parse all uploaded data from an ASCII file into a format readable by

ArcGIS.

 The product shall automate the steps traditionally taken to create a map-service (typically

done via ArcGIS Desktop) by utilizing Python to take the CSV files and create a map,

layers, and finally, a publish a map service.

 The product shall allow end-users to select the compound on the relevant timeline they

would like to view. These datasets will be ordered by year and month. If the client would

like to add more intervals or sorting methods for data, modifications must not require

more than 8 staff hours from a coding standpoint.

 The product shall allow users to queue multiple datasets at the same time; meaning the

end-user will be able to view multiple compounds at the same time (Example: CH4 and

CO2 concurrently).

 The product shall be viewable from an Internet browser when accessed using the Iowa

State VPN (stipulations for this are mentioned earlier).

4.2 NON-FUNCTIONAL

 The parsing of uploaded ASCII data should take less than 15 seconds, provided the dataset

is smaller than 50,000 points.

 The product shall check the server for new ASCII datasets every 15 minutes; meaning

datasets should be viewable by all users within approximately 15 minutes of being uploaded

by the client.

 The viewing (rendering) of selected data shall be generated in less than 30 seconds;

meaning the viewable data sets will be loaded by the product in less than 30 seconds.

 Once selected for creation, a dataset should be automatically created (from a CSV file) into

a map service (using our automated Python scripting) in less than 10 minutes. Note that

this timing is purely subjective to the speed of the server that we are given and is hard to

quantify without real-world experience. Furthermore, the ArcGIS API calls cannot be

modified and are not parallelizable, so multiple ASCII files uploaded in short time will

simply need to be queued. As such, this requirement is flexible as will likely be changed in

a later revision of this document.

 The end-user should be able to choose the color scheme to display the various datasets in.

PAGE 6

 When values are toggled, the values should be appropriately sized to the point that they

will not cascade, or billboard, toward the user. The user should be able to differentiate

between various points through color and/or size.

 The system will be able to seamlessly support 8 simultaneous users. Rationale: If more than

8 users attempt to use the service at the same time, global page load times will increase up

to 30 seconds (as stated earlier). After load times exceed 30 seconds, users will begin to get

error messages. This requirement is largely based upon the CPU power the University is

able to allocate to our server.

 2 users will be able to simultaneously browse the same map (same compound for the same

month). Rationale: If more than 2 users attempt to view the same map at the same time,

page load times for those users will increase up to 30 seconds. After load times exceed 30

seconds, those users will begin to get error messages. This requirement is largely based

upon the CPU power the University is able to allocate to our server.

 Web server usage will take priority over the processing of newly imported compounds. In

other words, if 8 users are trying to browse maps, then processing of any additional ASCII

files will slow down until web usage diminishes. This ultimately means that performance

targets for the processing of newly added data (as stated in earlier requirements) is

contingent upon the server not being utilized at the time.

PAGE 7

5 Challenges

Some of the early challenges our team came across with was that the original plan for the project

was to use Google Earth as our main platform. Unfortunately, our team quickly came to the

realization that Google Earth is deprecated, and we had to look for alternative methods to model

the data. Once our team found a suitable replacement came our hardest task to date: creating an

Earth Visualization Model from scratch.

Originally, we attempted utilizing only ArcGIS for JavaScript 4.1 to model the data. While we had

made significant progress in this regard (that our client was satisfied with), we were still working

on transposing the ASCII data into a format readable by the ArcGIS API. Another issue that we

were working on is making sure that the data displayed is accurate to the actual position of the data

on the map. In other words, the demo that we designed creates points relative to screen pixels and

we were trying to use the ArcGIS API to figure out how to create point sizes relative to map

coordinates. This had something that had been a challenge for us as we were trying to avoid using

an external map service which would increase costs (ArcGIS is currently free, as the ESRI CDN for

ArcGIS is free to use) and cause much additional work at the automation stage. Using purely

ArcGIS JavaScript became unrealistic, however, due to the large dataset size (as described in 3.2).

Trying to load such a massive dataset does not allow for quick, complete, and interactive rendering,

so we had to move towards ArcGIS for Server and associated published map services.

In addition to our projection system and possible system costs, we are faced with the problem of

learning an entire new API/Framework (ArcGIS). As none of our group members have interfaced

with this type of software, it is a bit of a challenge to learn due to the lack of examples online. In

addition, most people that work on ArcGIS software use various GUIs/tools to do all of their

development, so this decreases our example size even further for incremental learning. While we’ve

experimented seemingly enough with ArcMap (Desktop GUI), and we further understand what we

need to do, we still have to automate this entire process using ArcPy. Since we will be automating

the process of creation and publishing, we are left with even less examples to learn from.

Additionally, many of the ArcPy interfacing when editing objects using strictly Python is read-only.

Because of this, our team will likely have to write a sort of plug-in of our own to allow for complete

control of this process.

Finally, we will have the problem of attempting to plot very large data sets. Due to the massive size

of the data samples given to us by Professor Lu, we will have to minimize the amount of objects

placed on a map at any given time. Too many objects being placed will not only slow down the load

time, it may crash the browser. Therefore, in addition to parsing the original input data, we will

have to turn it into smaller objects. Should load time sensitivity become a greater issue later on in

our project, we will have to switch map layers and publish things more intelligently on the map

server. This is something that we are currently in the middle of testing and is largely dependent on

the server resources allocated to our team.

PAGE 8

6 Timeline

6.1 FIRST SEMESTER

As a team, we have decided on the following:

 September – Initial Meetings with Client / Adviser / Team, Search for Usable Product

 October – Initial Testing with ArcGIS Online (JS), Parser Construction

 November – Installation of Needed Software, Attempt to Create 3D mapping

 December – Finalize Documentation, Present to Board, Move Forward with Automation

The full timeline of the first semester can be seen in Appendices 9.8.a – 9.8.d.

In sum, we wanted to accomplish all of the following in the first semester: installation of all

required software, development of the parser and team website, and creation of 3D map services by

hand. Currently, we have accomplished all of the above.

As it currently stands, we have developed a prototype which will allow the user to display our

client’s data successfully on a 3D space (see Appendix 9.10). What we will be moving forward with

in the near future and into the beginning of semester two will be the automation of this process

using ArcPy. Once we are able to automatically plot the points of a set of data successfully, we will

move on to plotting multiple data sets. We will create concrete map service examples to help us get

familiar with the process and test this process's performance and stability in order to prepare us for

the second semester's work and implementation.

6.2 SECOND SEMESTER

The second semester will consist of the following:

January – Finish Automation

February – Multiple Map Selection

March – Pixel-to-pixel Communication (User customization) and extra features

April – Finalize Product, Present to Board

 The full timeline of the second semester can be seen in Appendices 9.9.a - 9.9f

Since we were able to get our prototype working, our second semester will begin with working on

and finishing the automation of the creation process and the creation of a legend to allow the user

to further understand their experience. After that, the second semester will largely revolve around

allowing the users to customize their experience with the product. By allowing the user to toggle

values, or giving various points the ability to “talk” to one another, we will be able to create an

environment which allows users to use a “sandbox” mode and forecast compound readings. We will

begin by allowing users to toggle values (9.9.a), and then lead into pixel-to-pixel communication

(9.9.b), where we will configure automation and expansion on Dynamic Layers before we begin

refinement and allowing the client to add extra features. As we cannot project how long the times

PAGE 9

for (9.9.a) and (9.9.b) will take, we have allowed extra room in the timeline in case we need to

extend our time frame. These times will likely expand in the future once more detailed

implementation begins. To see the full timeline for semester two see Appendices (9.9.a – 9.9.f).

PAGE 10

7 Conclusions

In summary, our project will revolve around plotting the work of Professor Lu and allowing various

end-users to view this work in a revolutionary space, with the ultimate goal of allowing the same

end-users to simulate their own data. We plan to work largely in a series of small iterative cycles,

which will allow us to demonstrate each iteration to the client, in case we need to make

adjustments. Additionally, working in these small iterative cycles will allow us to continue to

further analyze the ArcGIS API as a reference point, give us ample time to contact experts (Josh

Obrecht) in the field, and simultaneously keep our project moving forward. Our long term goal is

for us to complete these iterative cycles and steps to produce a well-designed product that is clear,

well-constructed, easy to access and navigate, and allow free-use for our client needs and further to

the public. By the time the product is finished, users will be able to understand the effects of

coinciding compounds upon the environment in a space that is visually pleasing and informative.

PAGE 11

8 References

1) Landmark DecisionSpace Visual. Digital image. World Oil. World Oil, 1 Sept. 2010. Web. 18

Oct. 2016. <http://www.worldoil.com/news/2010/9/1/halliburton-s-landmark-announces-

release-of-decisionspace-desktop-software-suite>.

2) "USGS Current Water Data for the Nation." USGS Current Water Data for the Nation. N.p.,

n.d. Web. 18 Oct. 2016. <http://waterdata.usgs.gov/nwis/rt>.

3) "ArcGIS API for JavaScript." ArcGIS for Developers. Esri, n.d. Web. 18 Oct. 2016.

4) “Google Earth Developers Guide” Google Developers. N.P., n.d Web. 14 Nov 2016.

<https://developers.google.com/earth/>.

5) “Announcing deprecation of Google Earth API”. Google Geo Developers Blog. N.P., n.d

Web 14 Nov 2016. <https://googlegeodevelopers.blogspot.com.au/2014/12/announcing-

deprecation-of-google-earth.html>.

6) "DecisionSpace Earth Modeling." Landmark Solutions E&P Software. Halliburton, n.d.

Web. 18 Oct. 2016.

7) "PublishMSDToServer." ArcGIS for Desktop. ESRI, n.d. Web. 19 Nov. 2016.

8) Perlman, USGS Howard. "How Streamflow Is MeasuredPart 2: The Discharge

Measurement." How Streamflow Is Measured. Part 2: The Discharge Measurement : USGS

Water Science School. Howard Perlman, 02 Dec. 2017. Web. 06 Dec. 2016

PAGE 12

9 Appendices

9.1

The client’s current solution to her visualization need:

9.2

The sample 3D space onto which we’d like to project our client’s work:

PAGE 13

9.3

The proposed Block Diagram of the end product:

9.4

 Attempted CSV modeling using only ArcGIS Online

PAGE 14

9.5

Attempted CSV modeling using only ArcGIS Online (Zoom-In)

9.6

Output (CSV) of First Implementation of Parser

PAGE 15

9.7.1 (1)

Halliburton's Landmark DecisionSpace Visual Example. (World Oil):

9.7.2 (2)

USGS streamflow data. (USGS):

PAGE 16

9.8

 First Semester Timeline:

(a) October 2016

(b) November 2016

PAGE 17

(c) December 2016

(d) First Semester Summary

PAGE 18

9.9 Second Semester Timeline:

(a) January 2017

(b) February 2017

PAGE 19

(c) March 2017

(d) April 2017

(e) May 2017

PAGE 20

(f) Second Semester Summary

9.10

	1 Introduction
	1.1 Project Statement
	1.2 Purpose
	1.3 Goals

	2 Deliverables
	3 Design
	3.1 Previous Work, Associated Literature, Past Development
	3.2 Proposed System Block Diagram
	3.3 Assessment of Proposed Method
	3.4 Validation

	4 Project Requirements/Specifications
	4.1 Functional
	4.2 Non-functional

	5 Challenges
	6 Timeline
	6.1 First Semester
	6.2 Second Semester

	7 Conclusions
	8 References
	9 Appendices

