
Visualization of Earth 
Modeling Systems

Team MAY1701

Eli Devine, Kellen Johnson

Anish Kunduru, Julio Salinas

Faculty advisor: Dr. Johnny Wong



Project Background

• The Client
• Professor Chaoqun Lu – Ecology, Evolution, and Organismal Biology 

Department at Iowa State

• The Research
• Historical and projected compound emissions & uptake.

• The Scope
• Create a tool which allows interested parties to view our client's data in an 

interactive user-space.



Project Significance

• Human influence on the climate is a widely accepted scientific 
theory, but it can be difficult to illustrate that to the people who 
can change policy.

• Increase awareness of climate change and assist policymakers and 
key stakeholders in related decision making.

• Our project provides a way to visually understand changes to the 
ecosystem as they occur over time.



The Problem

• Large Scale Datasets
• > 1,200,000 points in a table

• > 49,000 points to be rendered

• Slow Map Generation Times

• 2D Imaging

• The Project:
• Automate the process.

• Make the experience interactive.



Initial Project Plan

• Allow plotting of data in an interactive 3D space.

• End users should be able to dynamically select which dataset they 
wish to view.

• The solution must be platform independent and shouldn't require 
the installation of local software for end users.

• The process to add additional datasets should be automated.



Initial Prototype: Client-Side Rendering

• Idea: Dynamically load data; 
render completely client-side.

• Problem:
• Dataset too large for client-side 

rendering.

• Interacting with the map causes the 
entire dataset to re-render.



Revised Project Plan

• Parse the ASCII data into a spatial 
geodatabase and host a map service.

• Load maps in any web browser using 
JavaScript.

• Provide a GUI to allow the client to 
enter her data easily.

• Create a daemon that handles all 
automation steps.



Requirements: Functional

• The product shall allow the client to upload raw ASCII data to the 
server. 

• The product shall parse all uploaded data from an ASCII file into a 
format readable by ArcGIS.

• The product shall automate the steps traditionally taken to create 
a map-service (typically done via ArcMap).

• The product shall allow end-users to dynamically select and view 
any generated map.



Requirements: Non-Functional

• The product shall convert raw data uploaded by the client to an ArcGIS 
readable format within 15 seconds.

• After conversion of a dataset, the product shall automatically generate a 
map service within 10 minutes.

• The product shall make a selected map service available to an end-user 
within 30 seconds.

• The product shall ensure that an end-user can differentiate between 
various points through color and/or size.

• The product shall support a minimum of 8 simultaneous users across 
platform, 2 of whom can be simultaneously accessing the same map.



Parsing the Data

• First, convert to a format readable by the ArcGIS API.

• Input: .txt file

• Output: .csv file



Generating the Map Service

• Convert the CSV into a spatial 
geodatabase.

• Using a template map, create a 
new map and link the 
geodatabase.

• Publish the map to the ArcGIS 
Server as a map service.

• Problem: Read-only values in 
ArcPy.



Early Idea: Cached Maps

• Idea: To maximize performance, we can cache the data contained within 
map services. This is how existing mapping products typically work.

• Problem:
• Size, scaling levels, and number of maps the product must support.

• Solution: dynamic map services
• CPU & memory usage vs storage requirements.



The Daemon

• Function: Handle communication with the client GUI and 
subsequent calls to automatically generate and delete maps.

• Language: Java

• Best practices:
• Log critical output for use in debugging.

• Strongly parse client inputted data and return validity.

• "Clean code":

• Readability, reuse, and testing.



How It Works: The Daemon

• Installed on the server as a Windows service.

• Handles individual parsing scripts and ArcPy component calls.

• Keeps track of all maps that have been converted and uses that 
generate a JavaScript file that backs the front-end website.
• JavaScript is minified and sent to server.

• Faster and simpler than end-users querying another database.

• Opens up the possibility of clients caching map tiles for future offline use.

• Talks to the client GUI via our networking framework; encrypted 
by TLS.



The GUI

• Function: Allow easy automation for the client 
and ensure well-defined input to the daemon.

• Language: Java (JavaFX)

• MVC Design

• User Operations:
• Manually publish or delete maps.
• Automatically publish maps.
• View server logs.

• Deemed necessary due to:
• Client ease of use.
• Guard against invalid parameters being passed to 

daemon scripts.



The Webpage

• Function: Display generated maps.

• Languages: HTML & JavaScript

• Loads our hosted map services via 
RESTful API.

• Fulfills our client's key goal of educating 
the public about human driven climate 
change.

• Took feedback for design improvements.



Testing

• Speed
• Parsers

• Webpage reactivity

• Accuracy
• Verified generated map services 

against existing 2D images.

• Usability Testing
• Does our intended audience find 

the product easy to use?

• Stability
• Monitored server hardware 

usage.

• Debugging
• Logging critical subroutines.



Demonstration: VEMS Webpage

Link to end-user webpage:

http://may1701.sd.ece.iastate.edu/VEMS/VEMS.html

http://may1701.sd.ece.iastate.edu/Testing_ED/Blob_JS_Test.html


Future Development

• Multi-thread code.

• Website can support timeline maps (animations).

• Symbology and template maps generated in code.

• Regions and compounds can be added without recompiling 
daemon.

• Daemon can support multiple users.



Questions?



How do we create a Template Map?

• We’ve provided our client with 
sample files to edit.

• Process summary:
• Open a file in ArcMap.
• Modify the name of the layer 

(appears in the legend).
• Modify the symbology:

• Color ramp (map colors)
• Number of legend classes

• Range & labels

• Modify the reference scale within 
the data frame.

• Publish the map to the server.



GUI Screenshot: Single Upload Page



GUI Screenshot: Multi-UL Page



GUI Screenshot: Logs Page



Timing Results

• Data Transformation (Client Data to CSV)
• 1 to 5 seconds

• Entire Map Creation
• 45 seconds to 1 minute

• Initial Map Load by End-User
• 10 seconds


