
Visualization of Earth Modeling Systems (VEMS)

May1701

Project Statement: Professor Chaoqun Lu creates

historical and projected estimates of ecosystem functions

through an Earth Modeling System. In order to build a

bridge directly between stakeholders and modelers, our

client wishes to visually display time-series spatially

explicit model output data across regional to global scales

in decadal or centurial time periods. Professor Chaoqun Lu

would like an interactive method to display Earth system

models in lieu of standard, non-interactive, image files.

Solution: Create a system to automatically convert the

client’s datasets into 3D maps which allow users to view

the regional or global model output data (daily, monthly,

annually) in an interactive space.

Functional Requirements:

 The product shall allow the client to upload raw ASCII

data to the server.

 The product shall parse all uploaded data from an ASCII

file into a format readable by ArcGIS.

 The product shall automate the steps traditionally taken to

create a map-service (via ArcMap).

 The product shall allow end-users to dynamically select

and view any generated map.

Non-Functional Requirements:

 Parsing of dataset within 15 seconds.

 Map generation within 10 minutes.

 Map data should be distinguishable by color and/or size.

 Maps services should load in less than 30 seconds.

 8 Simultaneous users (across platform).

 2 Simultaneous users (same map service).

Intended Users:

 Students

 Professors

 Policymakers

 Land Managers

 Grant Foundations

Intended Use:

Educate the public on the effect of anthropogenic

stresses placed upon the environment. Ultimately, this

will increase awareness of climate change and assist

policymakers and key stakeholders in related decision

making.

 Programming Languages:

 Automated Daemon: Java

 Data Transformation Parsers: Java & Python

 End-user Website: HTML & JS

 Client GUI: Java (JavaFX)

ArcGIS Tools & Software:

 ArcMap: Allows for creation of template maps.

 ArcGIS for Server: Hosts generated map

services and provides Python libraries (Arcpy).

 ArcGIS API for JavaScript : Provides RESTful

API to load and display map services in a

browser environment.

Misc. Software:

 Procrun: Installation of daemon.

 WinSCP: Transfer generated JS to

webserver.

 Closure Compiler: Minify generated

JavaScript.

 Tiny log: Log critical information.

Operating Environment and System

Specifications:

 Website is available to anyone on the ISU

intranet.

 Windows Server: O/S that all our software runs

on.

Testing:

End-User Reactivity:

 Load Time (Rendering)

 Interaction Time (Zooming &

Panning)

Input Data Validity:

 Visual Confirmation

GUI:

 Log errors

 Notification-based interaction

Resource Management:

 CPU & RAM usage upon peak

end-user utilization of map

services

Client: Dr. Chaoqun (Crystal) Lu

Faculty Advisor: Dr. Johnny Wong

Team:

Kellen Johnson - Communication Lead

Anish Kunduru - Team Leader

Eli Devine - Webmaster

Julio Salinas - Concept Holder

Data Transformation Flow Diagram

Design Approach:

Block Diagram:

Modules:

 GUI:

 Allows Client to interact with Daemon

 Daemon:

 Error handling

 Ensures placement of input files within the server

 Handles Client requests

 Parsers:

 Translates Client data into ArcGIS readable format (CSV)

 Transforms CSV into spatial geodatabase

 Places data source into map document

 Publishes map services to ArcGIS for Server

 Website:

 Loads requested maps via RESTful JavaScript API

End-User Website (Monthly Map) End-User Website (Global Map) Client GUI (Server Logs)

Client GUI (Multi-upload)

Client GUI (Main Upload Screen)

